

FOR CLEAN ENERGY

LINSTITUTE F

Chemical Looping with Oxygen Uncoupling with Coal

University of Utah Departments of Chemical Engineering and Chemistry Institute for Clean and Secure Energy Project Team Pls: JoAnn Lighty, Kevin Whitty, Philip Smith, Ted Eyring

Funding & Participants

- Funding Period
 - 10/2009 to 8/2013
- Participants
 - Edward Eyring, Gabor
 Konya, Robert Lewis,
 Sean Peterson
 - Kevin Whitty, Chris
 Clayton, Crystal Allen
 - JoAnn Lighty, Asad
 Sahir, Nick Tingey,
 James Dansie, Artur
 Cadore
 - Philip Smith, Michal Hradisky, John Parra

- Funding Amount
 - Edward Eyring
 - 10/2008 to 8/2013
 - DOE 373,452
 - Cost Share 93,363
 - Kevin Whitty
 - DOE 227,528
 - Cost Share 56,882
 - JoAnn Lighty
 - DOE 254,378
 - Cost Share 63,594
 - Philip Smith
 - DOE 268,174
 - Cost Share 67,044 UNIVERSI OF UTAH

Overall Project Objectives

 Integrated use of process models, simulation, and experiments facilitates scale up, reduces deployment time, and reduces risk

Project Objectives

Carrier development / production

- Support material selection
- Copper addition and particle formation techniques
- Degree of copper loading
- Carrier characterization
 - Carrier capacity over multiple cycles
 - Oxidation and reduction kinetics
 - Fluidized bed performance (attrition, sintering, agglomeration)
- Simulation and Process
 - Fluidized bed simulations
 - Process material and energy balances
- Future: Process development and evaluation IVERSIT

Chemical Looping Combustion with Oxygen Uncoupling (CLOU)

Key Difference : The oxygen carrier dissociates at high temperature to yield oxygen for combustion reactions

Equilibrium of the Reaction $Cu_2O + \frac{1}{2}O_2 \longrightarrow 2CuO$

Institute For Clean & Secure Energy

Challenges

- Oxygen Carrier: amount, availability, cost, operation (sintering, attrition)
- Energy utilization: exothermic reaction in fuel reactor
- Unit design: ash/OC separation, char carry-over, size

Project Schedule and Milestones

Process Modeling and Economics

Develop OC rates from TGA and other data for CLOU December 2011 Prelim econ analysis of CLOU vs CLC **August 2012** Simulation of CLC **Cold-flow CLC with uncertainty** February 2012 Simulations for optimizing particle RT September 2012 Lab-Scale CLC Studies **Comparison of 3 CuO-based OCs** June 2011 October 2012 Attrition testing for 3 CuO-based carriers **CLC Kinetics Exploratory investigations of different**

December 2011

July 2012

supporting materials

Carrier Development and Characterization

TGA & FBC Studies

Institute For Clean & Secure Energy

TGA : β-SiC with 20%CuO

Lab-scale FBC

5 cm diameter quartz reactor Max T = 1200 C Automated gas supply switching Online analyzer with data logging

Oxidation - Ilmenite

Ea = 32 kJ/mole

50 wt% CuO on zirconia

FOR CLEAN

"The Law of Additive Reaction Times is a closed-form equation for the relationship between the conversion of solid reactant and time. The law is applicable for isothermal reactions in which the effective diffusivity of the solid remains constant during the reaction."

Project Schedule and Milestones

Process Modeling and Economics	
Develop OC rates from TGA and other data for CLOU	December 2011
Prelim econ analysis of CLOU vs CLC	August 2012
Simulation of CLC	
Cold-flow CLC with uncertainty	February 2012
Simulations for optimizing particle RT	September 2012
Lab-Scale CLC Studies	
Comparison of 3 CuO-based OCs	June 2011
Attrition testing for 3 CuO-based carriers	October 2012
CLC Kinetics	
Exploratory investigations of different	
supporting materials	December 2011
Develop materials for lab-scale studies	July 2012
	UNIVERS

OF UTAH

Process Modeling

Kinetics

Residence time vs. temperature; range of 885-985 C

Mattisson T., Leion H., Lyngfelt A. (2009) Chemical-looping with oxygen uncoupling using CuO/ZrO_2 with petroleum coke, *Fuel 88, 683-690*.

 Fuel Reactor : CuO reduction and coal char oxidation (higher T, lower residence time)

 time)

 Air Reactor : Cu₂O oxidation (higher T, higher residence time)

OF UTAH

ASPEN PLUS Simulation

ASPEN Simulation Blocks

Process Unit in CLOU	ASPEN Simulation Block(s)
Fuel Reactor	RYIELD and RGIBBS combust the coal. Oxygen
	is provided by the decomposition of CuO to
	Cu ₂ O, modeled by a RSTOIC block with a
	specified conversion
Air Reactor	RSTOIC with a specified conversion of Cu ₂ O to
	CuO
Treatment of	An EXCEL Spreadsheet interface is used to
Coal/Carbonaceous	allow for various C,H,N,O,S properties of
Feedstock	carbonaceous feedstock and appropriately
	evaluate oxygen requirements and thus
	oxygen carrier circulation.

ASPEN PLUS Simulation Parameters

Ultimate Analysis for fuels used for comparison

Coal	C(wt%	H (wt%	O(wt%	N(wt%	S(wt%	Heating Value
	d.a.f)	d.a.f)	d.a.f)	d.a.f)	d.a.f)	(MJ/kg)
Mexican Petcoke	88.8	3.1	0.5	1.0	6.6	30.9(as recd.)
North Antelope PRB	75.3	5.0	18.3	1.1	0.3	27.7(dry basis)

*Note: Aspen simulation done with PRB ultimate analysis

Major ASPEN PLUS Simulation Parameters

Coal Feed Rate	100 kg/h
Air Flow Rate	794 kg/h
Temperature Range of Fuel Reactor investigated in	885°C - 985°C
simulation	
Temperature Range of Air Reactor investigated in	885°C - 985°C
simulation	
Amount of Cu circulating in the system [*] , 15% excess O_2	3262 kg/h
Amount of ZrO ₂ circulating in the system	4579 kg/h
*Noto: roproporte 40% CuO on $7rO$	•

*Note: represents 40% CuO on ZrO₂

Energy Analysis from Sources

	Fuel Reactor Temp. (°C)	Air Reactor Temp. (°C)	∆T between Fuel and Air Reactor	Heat Duty for Air Reactor (kW)	Heat Duty for Fuel Reactor (kW)	Energy Associated with Flue Gas(kW)	Energy Associated with Loss(kW)	Energy Associated with exhaust from air reactor (kW)	Total (kW)
A	885	885	0	189	110	76	0	139	514
Ľ	985	985	0	159	109	89	0	160	517
ン	950	935	15	174	86	84	-22	150	472
ЛК	935	885	50	189	32	82	-73	139	369
	985	935	50	174	30	89	-73	150	370
ц	950	885	65	189	8	84	-95	139	325
\supset	985	885	100	189	-47	88	-146	139	223

Kinetics

Residence time vs. temperature; range of 885-985 C

Fuel Reactor : CuO reduction and coal char oxidation (higher T, lower residence time) Air Reactor : Cu₂O oxidation (higher T, higher residence time)

Project Schedule and Milestones

Process Modeling and Economics	
Develop OC rates from TGA and other data for CLOU	December 2011
Prelim econ analysis of CLOU vs CLC	August 2012
Simulation of CLC	
Cold-flow CLC with uncertainty	February 2012
Simulations for optimizing particle RT	September 2012
Lab-Scale CLC Studies	
Comparison of 3 CuO-based OCs	June 2011
Attrition testing for 3 CuO-based carriers	October 2012
CLC Kinetics	
Exploratory investigations of different supporting materials	December 2011
Develop materials for lab-scale studies	July 2012

of UTAH

Simulation

CLC Simulation Task Overview

Fluidized Beds

Beds

Implementing Direct Quadrature Method of Moments (DQMOM) technique in a commercial software (Star-CCM+). DQMOM provides a robust and accurate description of multiphase flows. Coupling this technique with available Large Eddy Simulation (LES) CFD models in Star-CCM+ allows us to produce a better description of both the fluid and dispersed phases.

Institute For Clean & Secure Energy

Fixed Bed

This figure depicts air passing through a bed of solid particles. Complex meshing schemes and cells on the order of millions are typically required to simulate such phenomena. This figure shows a meshing scheme for a CLC fixed bed system.

Fluidized Bed

Verification with CLC to assess the Star-CCM+ software capabilities in representing multiphase phenomena.

Particle inlet

Α

B

Fluidization air inlet

A: Solid viscosity = 0.1 B: Solid viscosity = 1

Simulation results representing volume fraction of solid in a CLC

Project Schedule and Milestones

Process Modeling and Economics	
Develop OC rates from TGA and other data for CLOU	December 2011
Prelim econ analysis of CLOU vs CLC	August 2012
Simulation of CLC	
Cold-flow CLC with uncertainty	February 2012
Simulations for optimizing particle RT	September 2012
Lab-Scale CLC Studies	
Comparison of 3 CuO-based OCs	June 2011
Attrition testing for 3 CuO-based carriers	October 2012
CLC Kinetics	
Exploratory investigations of different supporting materials	December 2011
Develop materials for lab-scale studies	July 2012
	UNIVER: of UTA

Future Development

- Continue to test materials in lab-scale FBC
 - Obtain kinetics of OC reduction/oxidation
 - Test different coals
 - Gather information on attrition
- Continue Process Modeling and Evaluations
 - Comparisons with CLC
 - Develop scenarios for energy utilization
 - Refine process model based on studies above

Future Development

- Newly-funded system to focus on CLOU-based CLC for coal
 - Funded by Univ. Wyoming
 - Focus initially on PRB coal
- Target approx. 200 kW_{th}
- Designed flexibly to operate as conventional (non-CLOU) CLC with solid or gaseous fuels
- Approx. 20 ft (6 m) tall overall
- Construction complete early 2013

Institute For Clean & Secure Energy

Progress and Plans

•Initial trials with conventional CLC

-Ilmenite as carrier, natural gas as fuel

-Ilmenite as carrier, coal as fuel

•Transition to CuO-based carrier, coal as fuel

-Also consider petroleum coke as fuel (low volatiles release

•Use process modeling and simulation to scale up and explore operation

OF UTAH

The authors acknowledge our DOE project manager David Lang.

In addition, we acknowledge Adel Sarofim who was closely involved in this work and made many important intellectual contributions.

This material is based upon work supported by the Department of Energy under Award Number DE-NT0005015. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

QUESTIONS?

